Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Peptides ; 177: 171214, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38615716

ABSTRACT

In this systematic review, we assessed the safety and possible safety events of native glucose-dependent insulinotropic polypeptide (GIP)(1-42) in human studies with administration of synthetic human GIP. We searched the PubMed database for all trials investigating synthetic human GIP(1-42) administration. A total of 67 studies were included. Study duration ranged from 30 min to 6 days. In addition to healthy individuals, the studies included individuals with impaired glucose tolerance, type 2 diabetes, type 1 diabetes, chronic pancreatitis and secondary diabetes, latent autoimmune diabetes in adults, diabetes caused by a mutation in the hepatocyte nuclear factor 1-alpha gene, end-stage renal disease, chronic renal insufficiency, critical illness, hypoparathyroidism, or cystic fibrosis-related diabetes. Of the included studies, 78% did not mention safety events, 10% of the studies reported that no safety events were observed in relation to GIP administration, and 15% of the studies reported safety events in relation to GIP administration with most frequently reported event being a moderate and transient increased heart rate. Gastrointestinal safety events, and changes in blood pressure were also reported. Plasma concentration of active GIP(1-42) increased linearly with dose independent of participant phenotype. There was no significant correlation between achieved maximal concentration of GIP(1-42) and reported safety events. Clearance rates of GIP(1-42) were similar between participant groups. In conclusion, the available data indicate that GIP(1-42) in short-term (up to 6 days) infusion studies is generally well-tolerated. The long-term safety of continuous GIP(1-42) administration is unknown.

2.
Peptides ; 177: 171227, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657907

ABSTRACT

Liver-expressed antimicrobial peptide 2 (LEAP2) and ghrelin have reciprocal effects on their common receptor, the growth hormone secretagogue receptor (GHSR). Ghrelin is considered a gastric hormone and LEAP2 a liver-derived hormone and both have been proposed to be involved in the pathophysiology of obesity and type 2 diabetes (T2D). We investigated the mRNA expression of LEAP2, ghrelin and GHSR along the intestinal tract of individuals with and without TD2, and in the liver of men with and without obesity. Mucosal biopsies retrieved with 30-cm intervals throughout the small intestine and from 7 well-defined locations along the large intestine from 12 individuals with T2D and 12 healthy controls together with liver biopsies from 15 men with obesity and 15 lean men were subjected to bulk transcriptomics analysis. Both in individuals with and without T2D, mRNA expression of LEAP2 increased through the small intestine until dropping at the ileocecal valve, with little LEAP2 mRNA expression in the large intestine. Pronounced LEAP2 expression was observed in the liver of men with and without obesity. Robust ghrelin mRNA expression was observed in the duodenum of individuals with and without T2D, gradually decreasing along the small intestine with little expression in the large intestine. Ghrelin mRNA expression was not detected in the liver biopsies, and GHSR mRNA expression was not. In conclusion, we provide unique mRNA expression profiles of LEAP2, ghrelin and GHSR along the human intestinal tract showing no T2D-associated changes, and in the liver showing no differences between men with and without obesity.

3.
Article in English | MEDLINE | ID: mdl-38217866

ABSTRACT

CONTEXT: Individuals with type 2 diabetes (T2D) have an increased risk of bone fractures despite normal or increased bone mineral density (BMD). The underlying causes are not well understood but may include disturbances in the gut-bone axis, in which both glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are regulators of bone turnover. Thus, in healthy fasting participants, both exogenous GIP and GLP-2 acutely reduce bone resorption. OBJECTIVE: The objective of this study was to investigate the acute effects of subcutaneously administered GIP and GLP-2 on bone turnover in individuals with T2D. METHODS: We included 10 men with T2D. Participants met fasting in the morning on three separate test days and were injected subcutaneously with GIP, GLP-2, or placebo in a randomized crossover design. Blood samples were drawn at baseline and regularly after injections. Bone turnover was estimated by circulating levels of collagen type 1 C-terminal telopeptide (CTX), procollagen type 1 N-terminal propeptide (P1NP), sclerostin, and PTH. RESULTS: GIP and GLP-2 significantly reduced CTX to (mean ± SEM) 66 ± 7.8% and 74 ± 5.9% of baseline, respectively, compared with after placebo (p = 0.001). In addition, P1NP and sclerostin increased acutely after GIP whereas a decrease in P1NP was seen after GLP-2. PTH levels decreased to 67 ± 2.5% of baseline after GLP-2 and to only 86 ± 3.4% after GIP. CONCLUSION: Subcutaneous GIP and GLP-2 affect CTX and P1NP in individuals with T2D to the same extent as previously demonstrated in healthy individuals.

4.
Diabetes Obes Metab ; 26(1): 160-168, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37799010

ABSTRACT

AIM: To explore the impact of type 2 diabetes (T2D), glycaemic control and use of glucose-lowering medication on clinical outcomes in hospitalized patients with COVID-19. MATERIALS AND METHODS: For all patients admitted to a hospital in the Capital Region of Denmark (1 March 2020 to 1 December 2021) with confirmed COVID-19, we extracted data on mortality, admission to intensive care unit (ICU), demographics, comorbidities, medication use and laboratory tests from the electronic health record system. We compared patients with T2D to patients without diabetes using Cox proportional hazards models adjusted for available confounding variables. Outcomes were 30-day mortality and admission to an ICU. For patients with T2D, we also analysed the association of baseline haemoglobin A1c (HbA1c) levels and use of specific glucose-lowering medications with the outcomes. RESULTS: In total, 4430 patients were analysed, 1236 with T2D and 2194 without diabetes. The overall 30-day mortality was 19% (n = 850) and 10% (n = 421) were admitted to an ICU. Crude analyses showed that patients with T2D both had increased mortality [hazard ratio (HR) 1.37; 95% CI 1.19-1.58] and increased risk of ICU admission (HR 1.28; 95% CI 1.04-1.57). When adjusted for available confounders, this discrepancy was attenuated for both mortality (adjusted HR 1.13; 95% CI 0.95-1.33) and risk of ICU admission (adjusted HR 1.01; 95% CI 0.79-1.29). Neither baseline haemoglobin A1c nor specific glucose-lowering medication use were significantly associated with the outcomes. CONCLUSION: Among those hospitalized for COVID-19, patients with T2D did not have a higher risk of death and ICU admission, when adjusting for confounders.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , COVID-19/complications , Glycated Hemoglobin , Glycemic Control , Glucose/therapeutic use , Denmark/epidemiology , Retrospective Studies
5.
Diabetes Obes Metab ; 25(11): 3079-3092, 2023 11.
Article in English | MEDLINE | ID: mdl-37551549

ABSTRACT

Tirzepatide is a unimolecular co-agonist of the glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors recently approved for the treatment of type 2 diabetes by the US Food and Drug Administration and the European Medicine Agency. Tirzepatide treatment results in an unprecedented improvement of glycaemic control and lowering of body weight, but the contribution of the GIP receptor-activating component of tirzepatide to these effects is uncertain. In this review, we present the current knowledge about the physiological roles of the incretin hormones GLP-1 and GIP, their receptors, and previous results of co-targeting the two incretin hormone receptors in humans. We also analyse the molecular pharmacological, preclinical and clinical effects of tirzepatide to discuss the role of GIP receptor activation for the clinical effects of tirzepatide. Based on the available literature on the combination of GLP-1 and GIP receptor activation, tirzepatide does not seem to have a classical co-activating mode of action in humans. Rather, in vitro studies of the human GLP-1 and GIP receptors reveal a biased GLP-1 receptor activation profile and GIP receptor downregulation. Therefore, we propose three hypotheses for the mode of action of tirzepatide, which can be addressed in future, elaborate clinical trials.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucagon/therapeutic use , Blood Glucose , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/therapeutic use , Gastric Inhibitory Polypeptide/physiology , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide-1 Receptor/therapeutic use
6.
J Clin Endocrinol Metab ; 108(11): 2821-2833, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37235780

ABSTRACT

CONTEXT: Lost glucagon-like peptide 1 receptor (GLP-1R) function affects human physiology. OBJECTIVE: This work aimed to identify coding nonsynonymous GLP1R variants in Danish individuals to link their in vitro phenotypes and clinical phenotypic associations. METHODS: We sequenced GLP1R in 8642 Danish individuals with type 2 diabetes or normal glucose tolerance and examined the ability of nonsynonymous variants to bind GLP-1 and to signal in transfected cells via cyclic adenosine monophosphate (cAMP) formation and ß-arrestin recruitment. We performed a cross-sectional study between the burden of loss-of-signaling (LoS) variants and cardiometabolic phenotypes in 2930 patients with type 2 diabetes and 5712 participants in a population-based cohort. Furthermore, we studied the association between cardiometabolic phenotypes and the burden of the LoS variants and 60 partly overlapping predicted loss-of-function (pLoF) GLP1R variants found in 330 566 unrelated White exome-sequenced participants in the UK Biobank cohort. RESULTS: We identified 36 nonsynonymous variants in GLP1R, of which 10 had a statistically significant loss in GLP-1-induced cAMP signaling compared to wild-type. However, no association was observed between the LoS variants and type 2 diabetes, although LoS variant carriers had a minor increased fasting plasma glucose level. Moreover, pLoF variants from the UK Biobank also did not reveal substantial cardiometabolic associations, despite a small effect on glycated hemoglobin A1c. CONCLUSION: Since no homozygous LoS nor pLoF variants were identified and heterozygous carriers had similar cardiometabolic phenotype as noncarriers, we conclude that GLP-1R may be of particular importance in human physiology, due to a potential evolutionary intolerance of harmful homozygous GLP1R variants.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Cross-Sectional Studies , Glucagon-Like Peptide 1/metabolism , Phenotype
7.
STAR Protoc ; 4(1): 102070, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853704

ABSTRACT

Here, we present a protocol for a randomized, double-blind, placebo-controlled, crossover trial to evaluate the effects of a continuous intravenous infusion of a native liver-derived hormone, liver-expressed antimicrobial peptide 2 (LEAP2), on postprandial glucose metabolism, appetite and satiety sensations, and ad libitum food intake in humans. We describe the preparation of the exogenous hormone administration and participants. We then detail the liquid mixed meal, ad libitum meal test, and blood sampling procedures for assessing postprandial glucose metabolism and food intake. For complete details on the use and execution of this protocol, please refer to Hagemann et al. (2022).1.


Subject(s)
Appetite , Sensation , Humans , Eating , Hormones/pharmacology , Glucose , Randomized Controlled Trials as Topic
8.
Bone ; 170: 116687, 2023 05.
Article in English | MEDLINE | ID: mdl-36754130

ABSTRACT

AIMS: The alpha-glucosidase inhibitor acarbose is an antidiabetic drug delaying assimilation of carbohydrates and, thus, increasing the amount of carbohydrates in the distal parts of the intestines, which in turn increases circulating levels of the gut-derived incretin hormone glucagon-like peptide 1 (GLP-1). As GLP-1 may suppress bone resorption, acarbose has been proposed to potentiate meal-induced suppression of bone resorption. We investigated the effect of acarbose treatment on postprandial bone resorption in patients with type 2 diabetes and used the GLP-1 receptor antagonist exendin(9-39)NH2 to disclose contributory effect of acarbose-induced GLP-1 secretion. METHODS: In a randomised, placebo-controlled, double-blind, crossover study, 15 participants with metformin-treated type 2 diabetes (2 women/13 men, age 71 (57-85 years), BMI 29.7 (23.6-34.6 kg/m2), HbA1c 48 (40-74 mmol/mol)/6.5 (5.8-11.6 %) (median and range)) were subjected to two 14-day treatment periods with acarbose and placebo, respectively, separated by a six-week wash-out period. At the end of each period, circulating bone formation and resorption markers were assessed during two randomised 4-h liquid mixed meal tests (MMT) with infusions of exendin(9-39)NH2 and saline, respectively. Glucagon-like peptide 2 (GLP-2) was also assessed. RESULTS: Compared to placebo, acarbose impaired the MMT-induced suppression of CTX as assessed by baseline-subtracted area under curve (P = 0.0037) and nadir of CTX (P = 0.0128). During acarbose treatment, exendin(9-39)NH2 infusion lowered nadir of CTX compared to saline (P = 0.0344). Neither parathyroid hormone or the bone formation marker procollagen 1 intact N-terminal propeptide were affected by acarbose or GLP-1 receptor antagonism. Acarbose treatment induced a greater postprandial GLP-2 response than placebo treatment (P = 0.0479) and exendin(9-39)NH2 infusion exacerbated this (P = 0.0002). CONCLUSIONS: In patients with type 2 diabetes, treatment with acarbose reduced postprandial suppression of bone resorption. Acarbose-induced GLP-1 secretion may contribute to this phenomenon as the impairment was partially reversed by GLP-1 receptor antagonism. Also, acarbose-induced reductions in other factors reducing bone resorption, e.g. glucose-dependent insulinotropic polypeptide, may contribute.


Subject(s)
Bone Resorption , Diabetes Mellitus, Type 2 , Aged , Female , Humans , Male , Acarbose/pharmacology , Acarbose/therapeutic use , Blood Glucose , Bone Resorption/complications , Bone Resorption/drug therapy , Cross-Over Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Glucagon-Like Peptide-1 Receptor , Insulin , Peptide Fragments , Middle Aged , Aged, 80 and over
9.
BMJ Open ; 13(2): e065736, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849212

ABSTRACT

INTRODUCTION: Due to reports of severely reduced insulinotropic effect of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) in type 2 diabetes (T2D), GIP has not been considered therapeutically viable. Recently, however, tirzepatide, a novel dual incretin receptor agonist (activating the GIP receptor and the glucagon-like peptide 1 (GLP-1) receptor) has demonstrated greater glucose and body weight-lowering properties as compared to GLP-1 receptor agonist therapy. The contribution of GIP receptor activation to effects of tirzepatide remains unknown. We will evaluate the glucose-lowering effect of exogenous GIP in the context of pharmacological GLP-1 receptor activation in patients with T2D. METHODS AND ANALYSIS: In this randomised, double-blind, four-arm parallel, placebo-controlled trial, 60 patients with T2D will be included (18-74 of age; on diet and exercise and/or metformin therapy only; glycated haemoglobin 6.5-10.5% (48-91 mmol/mol)). Participants will be randomised to an 8-week run-in period with subcutaneous (s.c.) placebo or semaglutide injections once-weekly (0.5 mg). Participants will then be randomised to 6 weeks' add-on treatment with continuous s.c. placebo or GIP infusion (16 pmol/kg/min). The primary endpoint is change in mean glucose levels (assessed by 14-day continuous glucose monitoring) from the end of the run-in period to end of trial. ETHICS AND DISSEMINATION: The present study was approved by the Regional Committee on Health Research Ethics in the Capitol Region of Denmark (identification no. H-20070184) and by the Danish Medicines Agency (EudraCT no. 2020-004774-22). All results, positive, negative and inconclusive, will be disseminated at national and/or international scientific meetings and in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBERS: NCT05078255 and U1111-1259-1491.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor , Blood Glucose Self-Monitoring , Blood Glucose , Glucose , Randomized Controlled Trials as Topic
10.
Eur J Endocrinol ; 188(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36651162

ABSTRACT

OBJECTIVE: The gut hormone glucose-dependent insulinotropic polypeptide (GIP) is an important regulator of glucose and bone metabolism. In rodents, the naturally occurring GIP variant, GIP(1-30)NH2, has shown similar effects as full-length GIP (GIP(1-42)), but its effects in humans are unsettled. Here, we investigated the actions of GIP(1-30)NH2 compared to GIP(1-42) on glucose and bone metabolism in healthy men and in isolated human pancreatic islets. METHODS: Nine healthy men completed three separate three-step glucose clamps (0-60 minutes at fasting plasma glucose (FPG) level, 60-120 minutes at 1.5× FPG, and 120-180 minutes at 2× FPG) with infusion of GIP(1-42) (4 pmol/kg/min), GIP(1-30)NH2 (4 pmol/kg/min), and saline (9 mg/mL) in randomised order. Blood was sampled for measurement of relevant hormones and bone turnover markers. Human islets were incubated with low (2 mmol/L) or high (20 mmol/L) d-glucose with or without GIP(1-42) or GIP(1-30)NH2 in three different concentrations for 30 minutes, and secreted insulin and glucagon were measured. RESULTS: Plasma glucose (PG) levels at FPG, 1.5× FPG, and 2× FPG were obtained by infusion of 1.45 g/kg, 0.97 g/kg, and 0.6 g/kg of glucose during GIP(1-42), GIP(1-30)NH2, and saline, respectively (P = .18), and were similar on the three experimental days. Compared to placebo, GIP(1-30)NH2 resulted in similar glucagonotropic, insulinotropic, and carboxy-terminal type 1 collagen crosslinks-suppressing effects as GIP(1-42). In vitro experiments on human islets showed similar insulinotropic and glucagonotropic effects of the two GIP variants. CONCLUSIONS: GIP(1-30)NH2 has similar effects on glucose and bone metabolism in healthy individuals and in human islets in vitro as GIP(1-42).


Subject(s)
Blood Glucose , Glucagon , Male , Humans , Blood Glucose/metabolism , Gastric Inhibitory Polypeptide , Insulin , Glucose
11.
Curr Osteoporos Rep ; 21(1): 21-31, 2023 02.
Article in English | MEDLINE | ID: mdl-36441432

ABSTRACT

PURPOSE OF REVIEW: To describe recent advances in the understanding of how gut-derived hormones regulate bone homeostasis in humans with emphasis on pathophysiological and therapeutic perspectives in diabetes. RECENT FINDINGS: The gut-derived incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is important for postprandial suppression of bone resorption. The other incretin hormone, glucagon-like peptide 1 (GLP-1), as well as the intestinotrophic glucagon-like peptide 2 (GLP-2) has been shown to suppress bone resorption in pharmacological concentrations, but the role of the endogenous hormones in bone homeostasis is uncertain. For ambiguous reasons, both patients with type 1 and type 2 diabetes have increased fracture risk. In diabetes, the suppressive effect of endogenous GIP on bone resorption seems preserved, while the effect of GLP-2 remains unexplored both pharmacologically and physiologically. GLP-1 receptor agonists, used for the treatment of type 2 diabetes and obesity, may reduce bone loss, but results are inconsistent. GIP is an important physiological suppressor of postprandial bone resorption, while GLP-1 and GLP-2 may also exert bone-preserving effects when used pharmacologically. A better understanding of the actions of these gut hormones on bone homeostasis in patients with diabetes may lead to new strategies for the prevention and treatment of skeletal frailty related to diabetes.


Subject(s)
Bone Resorption , Diabetes Mellitus, Type 2 , Gastrointestinal Hormones , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1 , Gastric Inhibitory Polypeptide , Bone Resorption/drug therapy , Glucagon-Like Peptide 2
12.
Diabetes ; 72(3): 336-347, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36478039

ABSTRACT

Enhanced secretion of glucagon-like peptide 1 (GLP-1) seems to be essential for improved postprandial ß-cell function after Roux-en-Y gastric bypass (RYGB) but is less studied after sleeve gastrectomy (SG). Moreover, the role of the other major incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is relatively unexplored after bariatric surgery. We studied the effects of separate and combined GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) blockade during mixed-meal tests in unoperated (CON), SG-operated, and RYGB-operated people with no history of diabetes. Postprandial GLP-1 concentrations were highest after RYGB but also higher after SG compared with CON. In contrast, postprandial GIP concentrations were lowest after RYGB. The effect of GLP-1R versus GIPR blockade differed between groups. GLP-1R blockade reduced ß-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the surgical groups but had no effect in CON. GIPR blockade reduced ß-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the CON and SG groups but had no effect in the RYGB group. Our results support that GIP is the most important incretin hormone in unoperated people, whereas GLP-1 and GIP are equally important after SG, and GLP-1 is the most important incretin hormone after RYGB.


Subject(s)
Gastric Bypass , Glucagon-Like Peptide 1 , Humans , Gastric Bypass/methods , Incretins , Insulin , Blood Glucose , Gastric Inhibitory Polypeptide , Glucose , Gastrectomy/methods
13.
Diabetes ; 71(10): 2209-2221, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35796651

ABSTRACT

Dipeptidyl peptidase 4 (DPP-4) degrades the incretin hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide (GIP). DPP-4 inhibitors improve glycemic control in type 2 diabetes, but the importance of protecting GIP from degradation for their clinical effects is unknown. We included 12 patients with type 2 diabetes (mean ± SD BMI 27 ± 2.6 kg/m2, HbA1c 7.1 ± 1.4% [54 ± 15 mmol/mol]) in this double-blind, placebo-controlled, crossover study to investigate the contribution of endogenous GIP to the effects of the DPP-4 inhibitor sitagliptin. Participants underwent two randomized, 13-day treatment courses of sitagliptin (100 mg/day) and placebo, respectively. At the end of each treatment period, we performed two mixed-meal tests with infusion of the GIP receptor antagonist GIP(3-30)NH2 (1,200 pmol/kg/min) or saline placebo. Sitagliptin lowered mean fasting plasma glucose by 1.1 mmol/L compared with placebo treatment. During placebo treatment, postprandial glucose excursions were increased during GIP(3-30)NH2 compared with saline (difference in area under the curve ± SEM 7.3 ± 2.8%) but were unchanged during sitagliptin treatment. Endogenous GIP improved ß-cell function by 37 ± 12% during DPP-4 inhibition by sitagliptin. This was determined by the insulin secretion rate/plasma glucose ratio. We calculated an estimate of the absolute sitagliptin-mediated impact of GIP on ß-cell function as the insulinogenic index during sitagliptin treatment plus saline infusion minus the insulinogenic index during sitagliptin plus GIP(3-30)NH2. This estimate was expressed relative to the maximal potential contribution of GIP to the effect of sitagliptin (100%), defined as the difference between the full sitagliptin treatment effect, including actions mediated by GIP (sitagliptin + saline), and the physiological response minus any contribution by GIP [placebo treatment + GIP(3-30)NH2]. We demonstrate insulinotropic and glucose-lowering effects of endogenous GIP in patients with type 2 diabetes and that endogenous GIP contributes to the improved ß-cell function observed during DPP-4 inhibition.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Blood Glucose/metabolism , Cross-Over Studies , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Double-Blind Method , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glycated Hemoglobin , Humans , Incretins/metabolism , Receptors, Gastrointestinal Hormone , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use
14.
Cell Rep Med ; 3(4): 100582, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35492241

ABSTRACT

The gastric hormone ghrelin stimulates food intake and increases plasma glucose through activation of the growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) has been proposed to inhibit actions of ghrelin through inverse effects on GHSR activity. Here, we investigate the effects of exogenous LEAP2 on postprandial glucose metabolism and ad libitum food intake in a randomized, double-blind, placebo-controlled, crossover trial of 20 healthy men. We report that LEAP2 infusion lowers postprandial plasma glucose and growth hormone concentrations and decreases food intake during an ad libitum meal test. In wild-type mice, plasma glucose and food intake are reduced by LEAP2 dosing, but not in GHSR-null mice, pointing to GHSR as a potential mediator of LEAP2's glucoregulatory and appetite-suppressing effects in mice.


Subject(s)
Antimicrobial Cationic Peptides/therapeutic use , Ghrelin , Glucose , Animals , Blood Glucose , Eating , Glucose/pharmacology , Humans , Mice , Receptors, Ghrelin
16.
Obes Surg ; 32(4): 1385-1390, 2022 04.
Article in English | MEDLINE | ID: mdl-35064866

ABSTRACT

INTRODUCTION: AspireAssist® allows aspiration of ~30% of an ingested meal through a percutaneous gastrostomy tube, reducing caloric uptake. We evaluated the acute effects of gastric aspiration on postprandial glucose tolerance, responses of gluco-regulatory and appetite-regulating hormones, appetite sensations, and food intake. METHODS: Seven AspireAssist®-treated individuals underwent two separate experimental days each involving a mixed meal test (MMT) with double-blinded aspiration and sham aspiration, respectively. Seven age and body mass index (BMI)-matched controls underwent one MMT. MMTs were followed by an ad libitum meal. RESULTS: Postprandial glucose tolerance was improved during aspiration vs. sham visits (median [interquartile range] baseline-subtracted area under the curve (bsAUC) 170 [88.4;356] vs. 388 [239;456] mmol/L × min, p = 0.025). Reduced responses (bsAUCs) of C-peptide (113 [28.4;224] vs. 302 [215;433] nmol/L × min, p = 0.014), cholecystokinin (223 [59.4;402] vs. 467 [416;546] pmol/L × min, p = 0.005), glucose-dependent insulinotropic polypeptide (4.63 [1.49;9.04] vs. 15.4 [9.59;18.9] nmol/L × min, p = 0.025), and glucagon-like peptide 1 (532.8 [274.5;1,278] vs. 1,296 [746.2;1,618] pmol/L × min, p = 0.032) were observed during aspiration vs. sham visits. Responses of glucagon, gastrin, ghrelin and peptide YY, appetite sensations, and ad libitum food intake were unaffected by aspiration. Responses of plasma glucose, gut hormones, appetite sensations, and food intake were similar during sham and control visits. CONCLUSION: Gastric aspiration improved postprandial glucose tolerance without causing compensatory increases in appetite or food intake, pointing to acute beneficial metabolic effects of aspiration therapy together with previously reported body weight-lowering effects.


Subject(s)
Appetite , Obesity, Morbid , Appetite/physiology , Blood Glucose/metabolism , Eating , Energy Intake , Glucose , Humans , Insulin , Obesity, Morbid/surgery , Postprandial Period/physiology
17.
Peptides ; 151: 170749, 2022 05.
Article in English | MEDLINE | ID: mdl-35065096

ABSTRACT

Glucagon-like peptide 1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are two class B1 G protein-coupled receptors, which are stimulated by the gastrointestinal hormones GLP-1 and GIP, respectively. In the pancreatic beta cells, activation of both receptors lead to increased cyclic adenosine monophosphate (cAMP) and glucose-dependent insulin secretion. Marketed GLP-1R agonists such as dulaglutide, liraglutide, exenatide and semaglutide constitute an expanding drug class with beneficial effects for persons suffering from type 2 diabetes and/or obesity. In recent years another drug class, the GLP-1R-GIPR co-agonists, has emerged. Especially the peptide-based, co-agonist tirzepatide is a promising candidate for a better treatment of type 2 diabetes by improving glycemic control and weight reduction. The mechanism of action for tirzepatide include biased signaling of the GLP-1R as well as potent GIPR signaling. Since the implications of co-targeting these closely related receptors concomitantly are challenging to study in vivo, the pharmacodynamic mechanisms and downstream signaling pathways of the GLP-1R-GIPR co-agonists in general, are not fully elucidated. In this review, we present the individual signaling pathways for GLP-1R and GIPR in the pancreatic beta cell with a focus on the shared signaling pathways of the two receptors and interpret the implications of GLP-1R-GIPR co-activation in the light of recent co-activating therapeutic compounds.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Insulin-Secreting Cells , Receptors, Gastrointestinal Hormone , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Receptors, Gastrointestinal Hormone/metabolism
18.
Eur J Endocrinol ; 186(2): 207-221, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34863038

ABSTRACT

OBJECTIVE: Type 2 diabetes (T2D) pathophysiology includes fasting and postprandial hyperglucagonemia, which has been linked to hyperglycemia via increased endogenous glucose production (EGP). We used a glucagon receptor antagonist (LY2409021) and stable isotope tracer infusions to investigate the consequences of hyperglucagonemia in T2D. DESIGN: A double-blinded, randomized, placebo-controlled crossover study was conducted. METHODS: Ten patients with T2D and ten matched non-diabetic controls underwent two liquid mixed meal tests preceded by single-dose administration of LY2409021 (100 mg) or placebo. Double-tracer technique was used to quantify EGP. Antagonist selectivity toward related incretin receptors was determined in vitro. RESULTS: Compared to placebo, LY2409021 lowered the fasting plasma glucose (FPG) from 9.1 to 7.1 mmol/L in patients and from 5.6 to 5.0 mmol/L in controls (both P < 0.001) by mechanisms involving reduction of EGP. Postprandial plasma glucose excursions (baseline-subtracted area under the curve) were unaffected by LY2409021 in patients and increased in controls compared to placebo. Glucagon concentrations more than doubled during glucagon receptor antagonism. The antagonist interfered with both glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide receptors, complicating the interpretation of the postprandial data. CONCLUSIONS: LY2409021 lowered FPG concentrations but did not improve postprandial glucose tolerance after a meal in patients with T2D and controls. The metabolic consequences of postprandial hyperglucagonemia are difficult to evaluate using LY2409021 because of its antagonizing effects on the incretin receptors.


Subject(s)
Biphenyl Compounds , Blood Glucose , Diabetes Mellitus, Type 2 , Postprandial Period , Receptors, Glucagon , Adult , Aged , Female , Humans , Male , Middle Aged , Biphenyl Compounds/therapeutic use , Blood Glucose/analysis , Cross-Over Studies , Diabetes Mellitus, Type 2/blood , Double-Blind Method , Fasting , Gastric Inhibitory Polypeptide/blood , Glucagon/blood , Glucagon-Like Peptide 1/blood , Receptors, Glucagon/antagonists & inhibitors
19.
Eur J Endocrinol ; 185(1): 33-45, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33886495

ABSTRACT

OBJECTIVE: The insulinotropic effect of exogenous, intravenously infused glucose-dependent insulinotropic polypeptide (GIP) is impaired in patients with type 2 diabetes. We evaluated the effects of endogenous GIP in relation to glucose and bone metabolism in patients with type 2 diabetes using a selective GIP receptor antagonist and hypothesized that the effects of endogenous GIP were preserved. DESIGN: A randomized, double-blinded, placebo-controlled, crossover study. METHODS: Ten patients with overweight/obesity and type 2 diabetes (mean±s.d.; HbA1c 52 ± 11 mmol/mol; BMI 32.5 ± 4.8 kg/m2) were included. We infused a selective GIP receptor antagonist, GIP(3-30)NH2 (1200 pmol/kg/min), or placebo (saline) during two separate, 230-min, standardized, liquid mixed meal tests followed by a meal ad libitum. Subcutaneous adipose tissue biopsies were analyzed. RESULTS: Compared with placebo, GIP(3-30)NH2 reduced postprandial insulin secretion (Δbaseline-subtracted area under the curve (bsAUC)C-peptide% ± s.e.m.; -14 ± 6%, P = 0.021) and peak glucagon (Δ% ± s.e.m.; -11 ± 6%, P = 0.046) but had no effect on plasma glucose (P = 0.692). Suppression of bone resorption (assessed by circulating carboxy-terminal collagen crosslinks (CTX)) was impaired during GIP(3-30)NH2 infusion compared with placebo (ΔbsAUCCTX; ±s.e.m.; -4.9 ± 2 ng/mL × min, P = 0.005) corresponding to a ~50% reduction. Compared with placebo, GIP(3-30)NH2 did not affect plasma lipids, meal consumption ad libitum or adipose tissue triglyceride content. CONCLUSIONS: Using a selective GIP receptor antagonist during a meal, we show that endogenous GIP increases postprandial insulin secretion with little effect on postprandial glycaemia but is important for postprandial bone homeostasis in patients with type 2 diabetes.


Subject(s)
Blood Glucose/metabolism , Bone Resorption/metabolism , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Insulin Secretion/physiology , Obesity/metabolism , Triglycerides/metabolism , Adult , Aged , Blood Glucose/drug effects , Collagen Type I/drug effects , Collagen Type I/metabolism , Cross-Over Studies , Double-Blind Method , Feeding Behavior/drug effects , Gastric Inhibitory Polypeptide/pharmacology , Humans , Insulin Secretion/drug effects , Male , Middle Aged , Peptide Fragments/pharmacology , Peptides/drug effects , Peptides/metabolism , Postprandial Period , Random Allocation , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism
20.
Eur J Endocrinol ; 185(1): 23-32, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33886497

ABSTRACT

AIMS/HYPOTHESIS: Metabolic effects of intermittent unhealthy lifestyle in young adults are poorly studied. We investigated the gluco-metabolic and hepatic effects of participation in Roskilde Festival (1 week of binge drinking and junk food consumption) in young, healthy males. METHODS: Fourteen festival participants (FP) were studied before, during and after 1 week's participation in Roskilde Festival. Fourteen matched controls (CTRL) who did not participate in Roskilde Festival or change their lifestyle in other ways were investigated along a similar timeline. RESULTS: The FP group consumed more alcohol compared to their standard living conditions (2.0 ± 3.9 vs 16.3 ± 8.3 units/day, P < 0.001). CTRLs did not change their alcohol consumption. AUC for glucose during OGTT did not change in either group. C-peptide responses increased in the FP group (206 ± 24 vs 236 ± 17 min × nmol/L, P = 0.052) and the Matsuda index of insulin sensitivity decreased (6.2 ± 2.4 vs 4.7 ± 1.4, P = 0.054). AUC for glucagon during oral glucose tolerance test (OGTT) increased in the FP group (1037 ± 90 vs 1562 ± 195 min × pmol/L, P = 0.003) together with fasting fibroblast growth factor 21 (FGF21) (62 ± 30 vs 132 ± 72 pmol/L, P < 0.001), growth differentiation factor 15 (GDF5) (276 ± 78 vs 330 ± 83 pg/mL, P = 0.009) and aspartate aminotransferase (AST) levels (37.6 ± 6.8 vs 42.4 ± 11 U/L, P = 0.043). Four participants (29%) developed ultrasound-detectable steatosis and a mean strain elastography-assessed liver stiffness increased (P = 0.026) in the FP group. CONCLUSIONS/INTERPRETATION: Participation in Roskilde Festival did not affect oral glucose tolerance but was associated with a reduction in insulin sensitivity, increases in glucagon, FGF21, GDF15 and AST and lead to increased liver stiffness and, in 29% of the participants, ultrasound-detectable hepatic steatosis.


Subject(s)
Aspartate Aminotransferases/metabolism , Binge Drinking/metabolism , Blood Glucose/metabolism , Diet , Fast Foods , Fatty Liver/metabolism , Fibroblast Growth Factors/metabolism , Growth Differentiation Factor 15/metabolism , Adult , C-Peptide/metabolism , C-Reactive Protein/metabolism , Denmark , Elasticity Imaging Techniques , Fatty Liver/diagnostic imaging , Glucagon/metabolism , Glucose Tolerance Test , Holidays , Humans , Insulin Resistance , Liver/diagnostic imaging , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...